Vine Parsing and Minimum Risk Reranking for Speed and Precision
نویسندگان
چکیده
We describe our entry in the CoNLL-X shared task. The system consists of three phases: a probabilistic vine parser (Eisner and N. Smith, 2005) that produces unlabeled dependency trees, a probabilistic relation-labeling model, and a discriminative minimum risk reranker (D. Smith and Eisner, 2006). The system is designed for fast training and decoding and for high precision. We describe sources of crosslingual error and ways to ameliorate them. We then provide a detailed error analysis of parses produced for sentences in German (much training data) and Arabic (little training data).
منابع مشابه
An SVM-based voting algorithm with application to parse reranking
This paper introduces a novel Support Vector Machines (SVMs) based voting algorithm for reranking, which provides a way to solve the sequential models indirectly. We have presented a risk formulation under the PAC framework for this voting algorithm. We have applied this algorithm to the parse reranking problem, and achieved labeled recall and precision of 89.4%/89.8% on WSJ section 23 of Penn ...
متن کاملImproving broadcast news transcription with a precision grammar and discriminative reranking
We propose a new approach of integrating a precision grammar into speech recognition. The approach is based on a novel robust parsing technique and discriminative reranking. By reranking 100-best output of the LIMSI German broadcast news transcription system we achieved a significant reduction of the word error rate by 9.6% relative. To our knowledge, this is the first significant improvement f...
متن کاملParsing Coordinations
The present paper is concerned with statistical parsing of constituent structures in German. The paper presents four experiments that aim at improving parsing performance of coordinate structure: 1) reranking the n-best parses of a PCFG parser, 2) enriching the input to a PCFG parser by gold scopes for any conjunct, 3) reranking the parser output for all possible scopes for conjuncts that are p...
متن کاملSurvey on Three Reranking Models for Discriminative Parsing
This survey is inspired by the so-called reranking techniques in natural language processing (NLP). The aim of this survey is to provide an overview of three main reranking tasks particularly for discriminative parsing. We will focus on the motivation for discriminative reranking, on the three models, boosting model, support vector machine (SVM) model and voted perceptron model, on the procedur...
متن کاملDiscriminative Reranking for Semantic Parsing
Semantic parsing is the task of mapping natural language sentences to complete formal meaning representations. The performance of semantic parsing can be potentially improved by using discriminative reranking, which explores arbitrary global features. In this paper, we investigate discriminative reranking upon a baseline semantic parser, SCISSOR, where the composition of meaning representations...
متن کامل